

Date: March 7, 2025

 Ericsson AB
Group Function Technology
SE-164 80 Stockholm
SWEDEN

Comments on NIST SP 800-227 Initial Public Draft
Recommendations for Key-Encapsulation Mechanisms

Dear NIST,

Thanks for your continuous efforts to produce well-written, user-friendly, and open-access security
documents. NIST has done an outstanding job with the standardization of ML-KEM and Post-
Quantum Cryptography (PQC) in general. Cryptographers from around the globe have participated
and contributed to the PQC project, with discussions being open and public, and all specifications freely
accessible. ML-KEM is an excellent general-purpose, single-recipient Key Encapsulation Mechanism
(KEM) with exceptional performance in both hardware and software.

We greatly appreciate that the ML-KEM family consists of only three algorithms, offers IND-CCA
security, ensures the shared secret is derived from randomness contributed by both parties, and
produces a uniformly random shared secret that is immediately usable without requiring additional
key derivation. We applaud NIST for mandating the use of SHA-3 in ML-KEM.

Please find below our comments on NIST SP 800-227:

- We think the document should mention that the transition to quantum-resistant cryptography

presents an excellent opportunity to reassess outdated algorithms and practices that no longer
meet acceptable security standards.

- We strongly support the excellent NIST SP 800-56A requirement that “An ephemeral private key

shall be used in exactly one key-establishment transaction.” The practice in some security
protocols of reusing private keys while still labeling them as ephemeral is deeply problematic and
misleading. Users and developers expect that ephemeral keys are used only once and that their
security is independent of sessions involving hostile adversaries. The reuse of ephemeral keys,
combined with implementation bugs such as the lack of public key validation, has resulted in
serious exploitable vulnerabilities. These flaws have allowed attackers to recover the so-called
“ephemeral” private key, enabling them to completely compromise sessions between legitimate

 2(6)

parties. Implementation bugs that allow attackers to recover private keys have been well-
documented for both ECC and RSA, and similar vulnerabilities are likely for quantum-resistant
KEMs. Always assuming breach and minimizing the impact of breach are essential zero-trust
principles. Any protocol that reuses private keys should explicitly acknowledge this practice and
state that the keys are (semi-)static.

We strongly recommend that the same requirement “An ephemeral private key shall be used in
exactly one key-establishment transaction” be included in all NIST specifications on KEMs
including SP 800-227. ML-KEM is so fast that reusing private keys to save a few CPU cycles is not
justifiable. At a minimum, reusing the same ephemeral private key for different users must be
strictly forbidden. It is essential that the keying material used for different users is independent.

Figure 1. Impact of session key compromise on two servers connected to multiple users: one server complies
with NIST requirements by not reusing ephemeral keys, while the other violates this requirement.

- We think SP 800-227 should discuss binding properties [1–2], private key storage formats [3],

implicit and explicit rejection [4], and anonymity and robustness of KEM-DEM constructions [5].
We think future KEMs should exhibit strong binding properties (e.g., MAL-BIND-K-CT, MAL-
BIND-K-PK, etc.), ensure anonymity and robustness in KEM-DEM constructions, use a 32-byte
seed as the private key, and be explicitly rejecting. While committing AEADs imposes significant
performance costs, KEM binding properties can be achieved with a small performance impact. We
do not believe implicit rejection offers practical security benefits in systems—on the contrary, it
merely defers the problem, assuming that later steps will properly handle the rejection. This places
an additional burden on application correctness, which is disadvantageous. As shown in [4],
explicit rejection is as secure as implicit rejection. Moreover, implicit rejection excludes certain
binding properties and introduces additional performance overhead.

compromise of key A does not lead to compromise of key B. Figure 1 illustrates the impact of some examples of
static key exfiltration when psk_ke, key_update, and (ec)dhe are used for rekeying. Each time period T uses a single
application_tra!c_secret. means that the attacker has access to the application_tra!c_secret in that time period
and can passively eavesdrop on the communication. means that the attacker does not have access to the
application_tra!c_secret. Exfiltration and frequently rerunning EC(DHE) is discussed in Appendix F of

.

Modern ephemeral key exchange algorithms like x25519 are very fast and have small message overhead.
The public keys are 32 bytes long and the cryptographic operations take 53 microseconds per endpoint on a single
core AMD Ryzen 5 5560U . Ephemeral key exchange with the quantum-resistant algorithm Kyber that
NIST will standardize is even faster. For the current non-standardized version of Kyber512 the cryptographic
operations take 12 microseconds for the client and 8 microseconds for the server .

Unfortunately, psk_ke is marked as "Recommended" in the IANA PskKeyExchangeMode registry. This may severely
weaken security in deployments following the "Recommended" column. Introducing TLS 1.3 in 3GPP had the
unfortunate and surprising e"ect of drastically lowering the minimum security when TLS is used with PSK
authentication. Some companies in 3GPP have been unwilling to mark psk_ke as not recommended as it is so
clearly marked as "Recommended" by the IETF. By labeling psk_ke as "Recommended", IETF is legitimizing and
implicitly promoting bad security practice.

This document sets the "Recommended" value of psk_ke to "D" indicating that it is "Discouraged".

 describes and classifies prohibited TLS 1.2 cipher suites without forward secrecy. This document sets the
"Recommended" value of all cipher suites listed in Appendix A of as well as
TLS_PSK_WITH_CHACHA20_POLY1305_SHA256 to "D" indicating that they are "Discouraged".

ᵢ
✘

✔

[I-D.ietf-tls-
rfc8446bis]

One-time ephemeral private keys, complying with NIST requirements
Attacker compromises the private key in connection C₃:
No compromise of other users' connections

✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ... ✔ ✔

C₀ C₁ C₂ C₃ C₄ C₅ C₆ C₇ ... Cₙ₋₁ Cₙ

Reuse of "ephemeral" private keys, violating NIST requirements
Attacker compromises the private key in connection C₃:
Compromise of previous and future connections involving other users

Figure 1: Impact of static key exfiltration in time period T3 when psk_ke, key_update, and (ec)dhe are used.

+-----+-----+-----+-----+-----+-----+-----+-----+ +-----+-----+
| ✘ | ✘ | ✘ | ✘ | ✘ | ✘ | ✘ | ✘ | ... | ✘ | ✘ |
+-----+-----+-----+-----+-----+-----+-----+-----+ +-----+-----+
 C₀ C₁ C₂ C₃ C₄ C₅ C₆ C₇ ... Cₙ₋₁ Cₙ
 <--->

[RFC7748]

[eBACS-DH]

[eBACS-KEM]

[RFC9113]
[RFC9113]

33.. CCiipphheerr SSuuiitteess wwiitthh NNUULLLL EEnnccrryyppttiioonn

Cipher suites with NULL encryption enables passive monitoring and were completely removed from TLS
1.3 . Unfortunately, the independent stream document reintroduced cipher suites with NULL
Encryption in TLS 1.3 even though NULL encryption violates several of the fundamental TLS 1.3 security properties,
namely "Protection of endpoint identities", "Confidentiality", and "Length concealment". Some companies in 3GPP
have already suggested to use in QUIC but luckily this is forbidden by and hopefully it will stay
like that.

Modern encryption algorithms like AES-GCM are very fast and have small message overhead. Upcoming
algorithms like AEGIS is much faster than AES-GCM . NULL encryption has no

[RFC7258]
[RFC8446] [RFC9150]

[RFC9150] [RFC9001]

[RFC5288]
[I-D.irtf-cfrg-aegis-aead] [AEGIS-PERF]

 3(6)

- We think SP 800-227 should define a (strong) KEM as providing IND-CCA security, deriving the
shared secret from randomness contributed by both parties, and outputting a uniformly random
shared secret that is immediately usable without additional key derivation. These properties
should be required for all future KEMs. Ensuring that all previously described KEMs in literature or
standards fit the definition should not be a goal. As the performance of the IND-CCA ML-KEM is
truly excellent, we do not think NIST should standardize any IND-CPA KEMs.

- We note that NIST uses the term "cryptographic algorithm" in varying ways. For example,
FIPS 197 refers to AES as a single algorithm, whereas SP 800-227 describes ML-KEM as three
algorithms, and MACs as a family of algorithms, parameterized by a key. It would be good with
more consistent use of the term.

- We think the definition of "negligible" as application-specific in Appendix A.3 is preferred over the
strict definition of it as smaller than 2⁻λ in Section 2.

- “Key agreement, KEM, and key transport are all types of key establishment”

We think a KEM is quite different from the two other concepts. We suggest rewriting to explain
that a KEM can be used for both key agreement and key transport.

- We think SP 800-227 should explain how single-recipient KEMs can be used in multi-recipient

settings and which security properties (key transport vs. key agreement) different approaches
gives. The use of PKE/KEMs in multi-recipient scenarios is very common. Some examples are
S/MIME, Age file encryption, and Signal messaging.

- “as long as the internal action of the process is hidden from observation”

This might make the reader think about security by obscurity. The input, output, and intermediate
values need to be hidden from observation, not the process. We suggest reformulating.

- We welcome NIST’s plan to allow hybrid shared secrets of the form 𝑆!‖𝑆"‖…‖𝑆#, where at least
one of the shared secrets 𝑆$ is NIST approved. We anticipate that hybrid shared secrets consisting
of more than two components will be relatively common. For instance, [6], authored by the chief
cryptographer of the Swedish NCSA, recommends hybrid keying that integrates symmetric keying,
post-quantum secure asymmetric keying, and classically secure asymmetric keying. Both TLS 1.3
and IKEv2 support this type of hybrid keying. One concrete example is TLS 1.3 resumption with
X25519MLKEM768. Additionally, hybrid keying with X25519/X448, ML-KEM, and BIKE/HQC
has been proposed as a conservative construction [7].

- “A key-encapsulation mechanism (KEM) is a set of algorithms that can be used by two parties

under certain conditions to securely establish a shared secret key over a public channel.”

To securely establish a shared secret it is essential that at least one party on the channel is
authenticated; otherwise, you have no idea who you are communicating with. We think it is
important that NIST clarifies this. There are a lot of snake-oil companies marketing QKD as
impossible to eavesdrop on due to the laws of physics, without acknowledging that its
eavesdropping protection ultimately relies on authentication with classical cryptography.

 4(6)

- “identifier A bit string that is associated with a person, device, or organization”

Identifiers are also used for animals, e.g., The National Animal Identification System (NAIS).

- “key pair A public key and its corresponding private key.”

Would be good to give encapsulation key and decapsulation key as examples here.

- We think the specification talks too much about old KEMs (RSASVE-KEM and ECDH-KEM) that
NIST plans to deprecate 2030. While X25519 and X448 are critical for hybridizing ML-KEM, we
see no future need for RSA, FFDH, and Weierstraß curves. Montgomery curves offer superior
security and performance and should be the sole choice for ML-KEM hybridization. Hybrids with
Montgomery curves have already become the de facto standard for TLS 1.3, DTLS 1.3, QUIC, SSH,
Signal, and Rosenpass with widespread deployments. We think NIST should encourage the use
of X25519 and X448, as specified in SP 800-186, in hybrid schemes. This aligns with de facto
Internet standards. Weierstraß curves has led to a large number of vulnerabilities leading to
complete compromise of both confidentiality and integrity in security protocol sessions. The
number of implementations that ignores public key validation does not seem to decrease with
new examples popping up all the time. We think Weierstraß curves should be phased out in the
migration to quantum-resistant cryptography.

Another factor that has not been discussed nearly enough is the performance of hybridized KEMs.
ML-KEM offers exceptional performance with X25519 being the only classical KEM that comes
close [8]. In contrast, using any of the standardized Weierstraß curves (NIST P-curves, Brainpool,
etc.) significantly reduces performance without offering meaningful benefits. Experience shows
that performance is critical for practical deployments—there are many examples of systems
disabling cryptography deemed too slow or performing asymmetric key exchanges less frequently
than recommended. Best practice for messaging systems is to perform an asymmetric key
exchange for each message [9]. Hybridization with Weierstraß curves decreases the performance
by several hundred percent compared to standalone ML-KEM and cannot be recommended. We
think SP 800-227 should only mention ML-KEM and ECDH-KEMs based on Curve25519 and
Curve448 as example KEMs. It is very good that NIST gives X-Wing as the only concrete example
of a hybrid PQ/T KEM.

- “Key confirmation should be used during KEM usage, as it may enhance the security properties of
the overall key-establishment process.”

The document should explain to the reader which security properties can be enhanced. Our
experience is that key confirmation is essential for availability. Without key confirmation, a party
might send a lot of messages that the recipient cannot process, or a newly issued key card might
not work when needed to open a door.

- NIST should take inspiration from [6] and recommend always hybridizing symmetric keying with

post-quantum secure asymmetric keying wherever possible. Asymmetrically distributed keys can
be refreshed at very frequent intervals to enhance security. 6G, the sixth generation of cellular
networks, is expected to incorporate Authentication and Key Agreement (AKA) augmented with
quantum-resistant KEMs [10–11], effectively preventing passive eavesdropping on U.S. mobile
communications by foreign nation-states that have compromised the symmetric keys.

 5(6)

- “NIST encourages the use of key combiners that generically preserve IND-CCA security.”

We think this is a very good recommendation. NIST should state in some specification that
“NIST encourages the use of composite signatures that preserve SUF-CMA security.”

- We applaud NIST for mandating the use of SHA-3 in ML-KEM. SHA-3 is significantly more modern
and versatile than SHA-2. Since ML-KEM and ML-DSA are based on SHA-3, it is natural to switch
to SHA-3 when migrating to quantum-resistant algorithms instead of sticking to SHA-2. SHA-3
was designed with side-channel security in mind, whereas SHA-2 is significantly harder to protect
against side-channels. HMAC, HDKF, MGF, etc. are constructions only needed when the hash
function has significant vulnerabilities/issues such as length-extension, failure to behave like a
random function, lack of variable-length output, etc. SHA-3 is practically much more secure than
SHA-2. Most users do not understand when and how they need to use HMAC/HKDF/MGF. SHA-3
by design leads to more secure implementations. While we understand the need to allow the
outdated legacy algorithm SHA-2 in early quantum-resistant standards like LMS, XMSS, and SLH-
DSA, we think NIST should mandate the use of SHA-3 in all future standards.

John Preuß Mattsson,
Expert Cryptographic Algorithms and Security Protocols

 6(6)

References

[1] Keeping Up with the KEMs: Stronger Security Notions for KEMs and Automated Analysis of KEM-
based Protocols
https://eprint.iacr.org/2023/1933.pdf

[2] How to Hold KEMs
https://durumcrustulum.com/2024/02/24/how-to-hold-kems/

[3] Unbindable Kemmy Schmidt: ML-KEM is neither MAL-BIND-K-CT nor MAL-BIND-K-PK
https://eprint.iacr.org/2024/523.pdf

[4] Treating dishonest ciphertexts in post-quantum KEMs – explicit vs. implicit rejection in the FO
transform
https://eprint.iacr.org/2025/062.pdf

[5] Anonymous, Robust Post-Quantum Public Key Encryption
https://eprint.iacr.org/2021/708.pdf

[6] On factoring integers, and computing discrete logarithms and orders, quantumly
http://kth.diva-portal.org/smash/get/diva2:1902626/FULLTEXT01.pdf

[7] ML-KEM is Great! What’s Missing?
https://csrc.nist.gov/csrc/media/Events/2025/workshop-on-guidance-for-
kems/documents/papers/ml-kem-is-great-paper.pdf

[8] lib25519 speed
https://lib25519.cr.yp.to/speed.html

[9] Signal documentation
https://signal.org/docs/

[10] Forward Secrecy for the Extensible Authentication Protocol Method for Authentication and Key
Agreement (EAP-AKA' FS)
https://www.rfc-editor.org/rfc/rfc9678.html

[11] Enhancing Security in EAP-AKA' with Hybrid Post-Quantum Cryptography
https://datatracker.ietf.org/doc/html/draft-ar-emu-pqc-eapaka

https://eprint.iacr.org/2023/1933.pdf
https://durumcrustulum.com/2024/02/24/how-to-hold-kems/
https://eprint.iacr.org/2024/523.pdf
https://eprint.iacr.org/2025/062.pdf
https://eprint.iacr.org/2021/708.pdf
http://kth.diva-portal.org/smash/get/diva2:1902626/FULLTEXT01.pdf
https://csrc.nist.gov/csrc/media/Events/2025/workshop-on-guidance-for-kems/documents/papers/ml-kem-is-great-paper.pdf
https://csrc.nist.gov/csrc/media/Events/2025/workshop-on-guidance-for-kems/documents/papers/ml-kem-is-great-paper.pdf
https://lib25519.cr.yp.to/speed.html
https://signal.org/docs/
https://www.rfc-editor.org/rfc/rfc9678.html
https://datatracker.ietf.org/doc/html/draft-ar-emu-pqc-eapaka

